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Abstract. A method is presented for modeling the wideband, frequency domain
electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources
operating at frequencies where EM diffusion dominates the response (less than 100
kHz) up into the range where propagation dominates (greater than 10 MHz). The
scheme employs the modified form of the vector Helmholtz equation for the scattered
electric fields to model variations in electrical conductivity, dielectric permitivity and
magnetic permeability. The use of the modified form of the Helmholtz equation allows
for perfectly matched layer (PML) absorbing boundary conditions to be employed
through the use of complex grid stretching. Applying the finite difference operator to
the modified Helmholtz equation produces a linear system of equations for which the
matrix is sparse and complex symmetrical. The solution is obtained using either the
biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with
preconditioning; in general we employ the QMR method with Jacobi scaling
preconditioning due to stability. In order to simulate larger, more realistic models than
has been previously possible, the scheme has been modified to run on massively
parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon
has indicated a maximum model size of 280 X 260 x 200 cells with a maximum flop
rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the
use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source
types and polarizations. The simulations show that the scheme is correctly able to
model the air-earth interface and the jump in the electric and magnetic fields normal to
discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be

employed to incorporate absorbing boundaries while below this normal (real) grid

stretching can be employed.

Introduction

Great strides have been made over the last de-
cade in geophysical electromagnetic (EM) modeling
of three-dimensional (3-D) structures. These ad-
vances have been primarily due to the rapid im-
provements in computer speed and memory. For
compact bodies residing in a layered Earth, integral
equation (IE) solutions [Tripp and Hohmann, 1984,
" Newman et al., 1986; Xiong, 1992] offer the most
efficient way of producing a solution. However, as
the complexity and size of the model grows, IE
methods become numerically cumbersome.

Recently, a series of papers have appeared that
employ various approximations to the integral
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equations governing the EM fields [Habashy et al.,
1993; Torres-Verdin and Habashy, 1994; Zhdanov
and Fang, 1995]. For general models these methods
are much quicker than the full IE solution because
they do not require the inversion of a large, dense
matrix. However, the approximations often exhibit
limitations in terms of the frequency that can be
employed and the conductivity contrasts that can
be simulated within the model. In addition, to this
point these types of approximations have not been
implemented in the radar range (greater than 10
MHz) where wave propagation becomes important.
Thus to ensure accurate calculation of the EM fields
for general models over a wide range of frequencies
and material contrasts, a differential equation solu-
tion needs to be employed.

Two different forms of differential equation solu-
tions exist: finite difference (FD) methods and finite
element (FE) methods. The advantage of these
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techniques over integral equations is that a linear
system of equations results in which the matrix is
very sparse. This property allows for the implemen-
tation of iterative Krylov subspace methods to
solve the system which are much more efficient
than direct matrix inversion. Although finite ele-
ment techniques are more flexible in terms of the
geometry of the mesh that can be employed, we
have chosen to employ an FD scheme. With an FD
scheme a well-structured grid results, which is
acceptable for the models we plan to consider.

Even with these computationally efficient solu-
tions, the complexity, and thus the realism of the
models that can be simulated on traditional serial
computers, is limited by memory and flop rate of
the processor. However, with the development of
massively parallel machines, the rate at which the
simulations can proceed has dramatically increased
because thousands of processors can operate on the
problem simultaneously. In this paper we examine
the implementation of a FD scheme on a parallel
platform and demonstrate its usefulness over a wide
frequency range for different types of geophysical
scenarios. In additional we will briefly examine two
different types of Krylov solvers and illustrate how
the choice of the proper solver can have a dramatic
impact on the solution time.

Theoretical Development

In order to simulate the EM response of a 3-D
earth, we numerically solve the frequency domain
version of the vector Helmholtz equation for the
scattered electric fields using a finite difference
approximation on a staggered grid (defined below)
as outlined by Yee [1966]. The use of this type of
grid has recently experienced a gain in popularity in
EM geophysical applications; Druskin and Kniz-
hnerman [1988, 1994], Smith [1992], Wang and
Hohmann [1993], Newman [1995], and Newman
and Alumbaugh [1995] all employ some type of
staggered finite difference grid to solve for the EM
fields in both the time and/or frequency domain.

The FD solution we shall outline has been de-
signed to compute the 3-D EM response for a wide
variety of Earth properties for frequencies ranging
from approximately 100 Hz up to 100 MHz. This
scheme is an extension of the one outlined by
Newman and Alumbaugh [1995] with the major
theoretical differences being (1) the incorporation of
absorbing boundary conditions (ABCs) and (2) the

ability to model variations in magnetic permeabil-
ity. The ABCs are required to simulate the response
of frequencies greater that 10 MHz where wave
propagation becomes dominant over lower-
frequency EM diffusion as without them, erroneous
results are produced. We have chosen to employ
the “‘perfectly matched layer’” (PML) absorbing
boundary conditions originally developed by Be-
renger [1993] for two-dimensional (2-D) time do-
main calculations and later modified for 3-D by Kaiz
et al. [1994] and Chew and Weedon [1994]. This
method uses a modified form of the vector Helm-
holtz equation in which the absorption is incorpo-
rated through the use of complex grid stretching.
Here we discuss the theoretical development of the
finite difference solution and leave the discussion of
the reasons for using the PML and its properties for
a later section and Appendix A.

Assuming a time harmonic dependence of e
where i = V—1, incorporating variable magnetic
permeability into equation (8) of Newman and
Alumbaugh [1995] and using the same form for the
modified differential operators as given by Chew
and Weedon [1994] results in the following expres-
sion for the vector Helmholtz equation:

m
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In these expressions the electrical conductivity,
magnetic permeability, and dielectric permeability
are denoted by o, u, and &, respectively, where the
“‘p’’ subscript designates a background or primary
value; ES, EP, and E' are the scattered, primary,
and total electric fields where E' = EP + ES; HS,
HP, and H! are the associated magnetic fields; e;
and h; for j = x, y, z are coordinate-stretching
variables which stretch the x, y, and z coordinates.

As shown in Appendix A, when e; and h; are
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Figure 1. The staggered grid for the Helmholtz equation for the electric fields. The dark circle at
the center represents node (i, j, k), which has the three designated components of the electric field

assigned to it. The large arrows represent the 13

unknown electric field values needed to form the

equation for Ex at node (i, j, k), with the other arrows representing the additional fields needed to
form the equations for Ey and Ez. The gray circles represent nodal points to which unknown electric
field values are assigned that are needed to complete the three equations at node (i, j, k); the open
circles represent nodal points from which no information is needed for these equations.

complex, then the medium is perfectly absorbing
and the degree of absorption is independent of the
angle of incidence. In addition, note that
(p — ppHP and [(0 — 0,) + iw(e — £,)]EP can be
thought of as equivalent source vectors for the
background medium. The primary fields and back-
ground values found in these source vectors can be
that of a whole space, a layered half space, or some
previously run model for which the results were
saved to be incorporated as the primary field. For
all of the examples presented here, a whole space
background has been assumed. As demonstrated in
Appendix B, when (1) is discretized, a linear system
of equations results in which the matrix is complex
symmetrical.

The benefit of the above formulation over a total
field formulation is that if the source is removed
from zones of anomalous electromagnetic proper-
ties, then this equivalent source exhibits a smoother
spatial dependence than that of an impressed di-
pole. Thus the fields are better behaved in the
vicinity of the transmitter. It must be mentioned,
however, that if the source is within a region of

anomalous properties, then problems can arise due
to the rapid variation of the primary field within the
equivalent source terms. This phenomenon will be
addressed below.

Numerical Solution
The Finite Difference Approximation

To cast expression (1) into a system of linear
equations, we discretize the earth (and the air
above) into a mesh of rectangular blocks. Again,
because we are employing the scattered field for-
mulation, this grid does not need to be finely
discretized near the source unless it is located
within or near a region of anomalous electromag-
netic parameters. To solve for E° as given in
equation (1), we employ a staggered grid [ Yee, 1966]
for each component of the electric field, as shown in
Figure 1. Following Wang and Hohmann [1993],
this corresponds to sampling the electric fields on
the edges of the cells and the magnetic fields at the
center of the cell faces.

The above formulation requires that the admittiv-
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Figure 2. Illustration to demonstrate how the average admittivity is calculated half way along a cell

edge in the y direction, and the average magnetic permeability is calculated at the center of the cell

face.

ity, defined as y = o + iwe, be computed halfway
along a given cell edge in Figure 1. Wang and
Hohmann [1993] showed that for low-frequency
calculations, an average conductivity can be evalu-
ated by tracing out a line integral of the magnetic
field centered on the midpoint of the cell edge.
Using their formulation, the resulting admittivity is
simply the weighted sum of the admittivities of the
four adjoining cells. For example, in Figure 2 the
averaged admittivity in the y direction at ({ + 1,j +
(1/2), k + 1) is given by
where A; jiap) 18 @ weighting function that is
based on the cross-sectional area of each cell that is
bounded by a line integral. This scheme is a simple
application of Ampere’s law.

Similarly, the magnetic permeability is averaged
across the cell faces to correspond to the location of

the magnetic fields. A simple relation can be de-
rived where this permeability is a geometric average
of the two permeabilities of the neighboring cells
such that the normal component of the magnetic
induction, B = pH, is continuous. For example, in
Figure 2 the average permeability corresponding to
H, at the face (( + 1, j + 1/2, k + 1/2) uses the
permeability properties of cells (i + 1,, k) and (i, j,
k), and is given by

(eiv3p = Xiv12)iv Ll ioi,jk

M avg (&)

(ivsn = Xir)Mi g + (Kiv1 — Xiv12) it jk
Notice in (1) that if the first term of the right-hand
side is moved to the left side, then it contains both

the derivatives as well as the unknown scattered
field walues, while the right-hand side consists of the
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known equivalent source values. Thus we can set
up a system of equations which are written in
matrix form as

Af=% (6)

where A is an N-by-N complex symmetrical matrix
containing the numerical approximation of the spa-
tial derivatives in (1) as well as the model electrical
properties, N is the number of unknown electric
field values, §is the primary field source vector, and
T is the scattered field vector we wish to solve for.
To assemble a linear system of equations, we em-
ploy Dirichlet boundary conditions with the tangen-
tial electric fields at the edges of the grid set equal to
zero. Unwanted reflections are avoided by either
real or complex grid stretching as described below.
The explicit formulation for the finite difference
solution is given in Appendix B.

The solution vector is obtained by using precon-
ditioned Krylov subspace techniques. These meth-
ods are among the fastest iterative solvers currently
available for large sparse systems of equations.
These methods also efficiently map to a parallel
computer architecture. A brief description of the
Krylov solvers employed is given in the next sec-
tion.

After the scattered fields at the grid points have
been determined, the fields at the receiver(s) must
be calculated. The electric fields are simply calcu-
lated by bilinear interpolation of the values at the
nodal points surrounding the receiver point. The
magnetic fields at the receivers are calculated by
first taking the numerical approximation of Fara-
day’s law for the scattered electric fields surround-
ing the receiver,

V. XE*=—iwpH® + (u — pp)HP )
and then interpolating to the point of interest.

The Krylov Subspace Solver

In recent years a number of Krylov subspace
algorithms have been developed for handling linear
systems such as ours where A is complex symmet-
ric and not Hermitian. These methods proceed in an
iterative manner to minimize

F=Af-5. 8)

Though a reduction in the error is not guaranteed at
each iteration, and thus the convergence is gener-
ally erratic, these techniques have proven success-

Table 1. Type and Number of Major Mathematical
Operations Involved in the BICG and QMR
Schemes

Times Used Within the

Recursion
Operation BICG QMR
Vector-matrix multiply 1 1
Vector dot product 3 4
Vector addition/subtraction 3 6
Vector constant multiply 3 9

BICG, biconjugate gradient; QMR, quasi-minimum residual.

ful in reducing the error to a predetermined level
within an acceptable number of iterations. The most
widely used of the techniques is the biconjugate
gradient (BICG) method first employed for electro-
magnetic modeling by Sarkar [1987] and more re-
cently for magnetotelluric modeling by Smith
[1992]. Here we have examine both this method as
well as the quasi-minimum residual (QMR) tech-
nique proposed by Freund [1992], who has deter-
mined that these two methods offer the best trade-
off between solution accuracy and speed for matrix
systems that are complex symmetrical. In order for
the reader to better understand the parallelization of
the FD scheme as discussed below, a general de-
scription of these routines is given here. For a more
explicit-description, the reader is referred to work
by Freund [1992].

To initialize both routines, a starting solution
vector T is chosen, the residual given by (8) and a
matrix-vector multiply are computed, and then var-
ious vector dot products are calculated. After this
initialization process has been completed, the re-
cursion begins. Table 1 lists the four mathematical
operations which dominate the run time within the
recursion, as well as the number of times each
operation is employed within both of the solvers.
Because the QMR scheme is more computationally
intensive than the BICG method, it will take more
time per iteration to complete the necessary calcu-
lations. However, as explained by Freund [1992],
this added complexity is offset by stability.

This observation is illustrated in Figure 3, where
the residual error (defined as |[&]*/5|*) for both
methods is plotted as both a function of iteration
number and time for one of the models discussed
below. Both methods converge rather quickly up to
approximately 900 iterations. However, the BICG
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Figure 3. Convergence of the BICG and QMR methods for the HMD simulation in Figure 5 at 7.2
kHz. (a) Normalized residual versus run time. (b) Normalized residual versus iteration number.

method loses stability beyond this point, and the
residual begins to oscillate. The net result is that it
takes over twice as long to converge to the desired
level when compared to the QMR method. We feel
that this is most likely due to the fact that the BICG
scheme experiences problems associated with
round-off errors before the QMR does. Although we
have found that the BICG routine will often con-
verge 5% faster than the QMR method, we prefer
the QMR scheme because of its more stable nature.

Note that when using these methods, § has to be
reconstructed for each new source, and both A and
§ for each frequency, that is, the process has to be
reinitialized for each new source and frequency.
However, if successive source positions and/or
frequencies do not exhibit large differences from
one another, then a bootstrapping technique can be
performed where the previous solution vector is
used as the initial guess (f)) for the new model.
Newman and Alumbaugh [1995] have found that for
airborne simulations this process can offer a time
savings of up to 15%.

Preconditioning

In order to accelerate the convergence of the
BICG, QMR, and other Krylov methods, precondi-
tioning can be applied to the linear system. This
process reduces the condition number of the system
matrix by finding some approximation ™M™ to

A~! and then multiplying through the system by
this matrix [Barrett et al., 1994]. At this time
several different preconditioning schemes have
been implemented and tested including modified
incomplete Cholesky methods, two different poly-
nomial preconditioners, a block Jacobi method, and
a simple diagonal or Jacobi scaling. An excellent
overview of all these methods has been given by
Barrett et al. [1994]. Of these methods, Jacobi
scaling and a least squares poiynomiai offer the best
acceleration of convergence for the system we are
solving. In addition, although we have found that
the polynomial preconditioner can produce up to a
25% time savings over the diagonal scaling if the
optimal number of polynomial terms are employed,
choosing the wrong number of terms can result in
much slower convergence. Thus, because we have
not fully investigated a method for choosing the
optimal number of terms, Jacobi scaling was em-
ployed for all of the results presented below.

The primary reason that Jacobi scaling works as
well as it does is that it only has to be applied once
before the solver is called; most other precondition-
ers must be recalculated and applied at each itera-
tion within the Krylov routine. The scaling involves
modifying (6) such that the linear system looks like

[ﬁ*]/Zgﬁ—l/Qﬁl/Zf — Dv1/2§ )
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where ]3,-}’2 = 0fori##j, and lz)i}/z = A" fori=j.
The modified matrix []3“1/2213)_” 2] is still complex
symmetric but with unity on its main diagonal.
Because the whole system is scaled before entering
the solver, the scaled fields (D "*f) must be rescaled
back to their true values after an acceptable con-
vergence has been obtained.

Properties of the Perfectly Matched Layer
Absorbing Boundary Condition

The perfectly matched layer (PML) absorbing
boundary condition developed by Berenger [1993]
was chosen over other ABCs for two reasons: (1) it
is naturally parallelizable, as opposed to an integral
boundary condition such as the one given by
Druskin and Knizhnerman [1994], and (2) it leaves
the matrix complex symmetrical, which is not true
of many other ABCs such as the Bayliss-Turkel and
Liao conditions [Chew, 1990]. In addition, the in-
corporation of complex grid stretching involves
only slight modifications to the existing serial ver-
sion of the code making it easy to implement, and
unlike the time domain solution the frequency do-
main version does not require a doubling of mem-
ory.

Although their calculations employ the coupled
modified Maxwell’s equations in the time domain,
Chew and Weedon [1994] develop theory in the
frequency domain to demonstrate how lossy, non-
reflecting conditions are created along the mesh
boundaries. Using their type of analysis, we dem-
onstrate that these same properties hold for the
scattered electric field Helmholtz equation in Ap-
pendix A. Here we explain the physical character-
istics of the complex stretching variables, how they
are implemented, and, briefly, how they affect our
linear system.

The complex stretching parameters (e; and /; for
Jj=x,y, zin (2) and (3)) are assigned a value of the
form 1 + a — ib, and the method in which they are
incorporated into the discrete finite difference equa-
tion is given in Appendix B. On the internal portion
of the mesh, a = b = 0 such that the modified
Helmholtz equation reduces to the normal form.
Near the edges of the mesh e; and /; are allowed to
vary over several cells, but only in the direction that
is perpendicular to the boundary. For example
along the +z boundary e, = h, = e, = h, = 1, and
only ez and h, are allowed nonzero values of a and
b.

Because we are solving an implicit rather than
explicit system, we have found that in order to
incorporate a given amount of loss, or attenuation,
across a number of cells serving as the absorbing
boundary, it is better to set a and b constant rather
than gradually increasing their value toward the
mesh boundaries, as suggested by Berenger [1993];
gradually increasing their value results in a greater
number of iterations needed to achieve conver-
gence. We believe that this property can be ex-
plained in terms of how the mesh design affects the
spectral properties of A. We have found empirically
that as the ‘‘aspect’ ratio between the largest cell
and smallest cell in the mesh increases, the conver-
gence slows because of the larger condition number
of A. Thus gradually increasing the stretching pa-
rameters outward will produce a cell along the edge
of the mesh which is effectively much larger than
any of the cells in the model that has employed a
constant stretching. Because the smallest cell size is
the same in either case, the solution of the model
that employs the gradual stretching will have a
larger maximum aspect ratio and thus will take
longer to converge.

Currently, we do not have a rigorous method for
choosing a and b. Rather they have been chosen by
observing the convergence properties of the Krylov
solvers for models that can be compared to analytic
results. In general we have found that for frequen-
cies less than 100 kHz, it is best to set b = 0 and
vary only a, that is, incorporate normal grid stretch-
ing. For frequencies greater than 10 MHz, better
results are obtained by setting a to 0 and varying
only b. In between these frequencies a combination
of a and b can be employed.

Parallel Implementation on Multiple
Instruction Multiple Data (MIMD)
Computers

As mentioned in the introduction, the original
serial version of the code has been modified to run
on massively parallel MIMD (multiple instruction
multiple data) machines which can have thousands
of processors. This was a necessity in order to
simulate more realistic models than has previously
been available. These parallel architectures are de-
signed with a given number of processors in each
direction (nx in x, ny in y, and nz in z) such that the
total number employed is equal to nx X ny X nz.
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The model is then broken up across the processor
bank such that each individual processor is in
charge of a 3-D subset of the model. Because each
processor needs to make only the necessary calcu-
lations for this subset, and because all of the pro-
cessors are making their appropriate calculations
simultaneously, the solution time is reduced by a
factor which is approximately equal to the number
of processors employed as long as interprocessor
communication is minimal.

The first step in converting the serial version of
the code to a parallel version is to divide the
problem up among the processors such that it is
load balanced. This preprocessing step is necessary
to ensure that large banks of processors are not
standing idle for long periods of time while a single
or small number of processors complete their cal-
culations. Thus the problem is broken up such that
each processor has as close to an equal number of
unknowns as possible for which to solve.

The second issue that needs to be addressed is
inputting the model. To accomplish this, we have
decomposed the input data into two different sets: a
global data set and a local data set. Global data are
those variables that each processor needs to know,
such as the source and receiver positions, the
frequencies, what type of solver is being employed,
and the location of the mesh nodes. These form a
fairly small data set which can easily be read in by
a ‘“‘lead’” processor and then ‘‘broadcast” to all
other processors. The second type of input is the
local data, or local model parameters (conductivity,
dielectric permitivity, and magnetic permeability)
that are assigned to each cell within the model.
These form a large data set (up to hundreds of
megabytes) which cannot be input like the global
data because of limited amounts of local memory on
each processor. However because each processor
only needs a small portion of the model, the local
data can be broken up into multiple files, one for
each processor, which are then read in individually.
Additional time savings can be incorporated by
distributing these multiple files across a parallel disk
system which allows several files to be read simul-
taneously.

After the data have been loaded, each processor
constructs its own portion of the matrix A and
source vector § and then proceeds to solve for its
portion of the solution vector. However, because
each iteration within the solver routines requires
one matrix-vector multiply and several vector dot

products, information must be exchanged both be-
tween all of the processors as well as small subsets
of processors. The dot products are fairly easy to
implement as they involve (1) a local calculation in
which each processor computes the dot product of
its portion of the vector and (2) a global calculation
in which all the local calculations are ‘‘gathered’’ by
the lead processor, summed, and the result broad-
cast across the machine.

The matrix-vector multiply is more difficult to
implement because it requires that each processor
communicates with those ‘‘neighboring’ proces-
sors that contain adjacent portions of the model.
This is deduced by closely examining the finite
difference stencil in Figure 1. For example, in order
for the processor containing node (i, j, k) to com-
plete its matrix-vector multiply in a given iteration,
it will need to know the current values of the
appropriate unknowns assigned to adjacent nodes.
However, if (i, j, k) lies on a boundary such that
nodes (i,j + 1, k — 1) and (i, j + 1, k) are assigned
to a different processor, then the processor contain-
ing (i, j, k) will need to receive the updated values of
those particular unknowns from the processor con-
taining (i, j + 1, k — ) and (i, j + 1, k), and vice
versa. Thus the next and most difficult step in
implementing the code on a parallel machine is to
determine both the stencil which defines the neigh-
boring processors that each processor must com-
municate with and also which unknowns will be
communicated.

This is accomplished in the following manner. If
we assume that each processor contains only a
single node, then we can imagine it as a cubic shape
enclosing node (i, j, k) as well as all other nodes in
Figure 1. Careful examination then indicates that
there are two types of communication that each
processor needs to execute with its appropriate
neighbors. The first type of communication will
occur across the ‘‘faces’” of the cube. For node (i, J,
k) this implies communication with those nodes
directly connected to it by the gray lines of the finite
difference stencil, that is, nodes G — 1, j, k), (i + 1,
LRk, Gj—=1,k,Gj+1,k,GJ k—1)and (,/]J,
k + 1), and involves sending and receiving either
two or three unknowns to each of these. The second
type of communication occurs across certain ‘‘cor-
ners’’ of the cube and involves those nodes which
are not directly connected to (7, j, k) by the stencil
lines, for example, node (i + 1,j, k — 1). This type
of communication requires only one unknown per
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Edge
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Face
Contributions

Figure 4. The processor communication stencil that
provides for proper message passing in the solution phase
of the program. Each cube represents a neighboring
processor with which a processor located at the center of
the ‘‘face contributions’’ cluster would need to exchange
information through message passing.

node being communicated each way. If we now
expand the idea such that each processor cube
contains a 3-D distribution of nodal points, then we
can develop the processor communication stencil
shown in Figure 4. Thus, if the processor we are
interested in contains a certain block of the model
which is represented by a cube at the center of the
stencil in Figure 4, then the processors, or portions
of the model that it needs to communicate with, are
arranged about this specific processor in the manner
illustrated.

The last issue to be addressed is the data output.
Because for any given source we only need to know
the results at a limited number of receiver positions,
all of which may lie on the same processor, the data
output is inherently nonparallel and is accomplished
in the following steps: (1) Each processor deter-
mines which processor holds the portion of the
model that contains the receiver position; (2) this
‘‘receiver’’ processor then determines if it needs
any values from adjacent processors, completes the
necessary point-to-point communication with those
processors, and then does the necessary bilinear
interpolation; and (3) the results are then sent to the
lead processor which outputs them to disk.

To this point the code has been implemented on
two different MIMD machines available at Sandia

National Laboratories, the 1840-processor Intel
Paragon and 1024-processor NCUBE; run time
characteristics for the Paragon are given below. To
provide for the required message passing on these
two machines we have chosen to employ the mes-
sage-passing interface (MPI) [Skjellum et al., 1993]
rather than using machine-specific commands. This
provides portability to the code as it will be able to
run on any parallel machine and/or distributed net-
work of machines on which this public domain
library is available.

Demonstration of the Finite Difference
Solution

To demonstrate versatility of the numerical solu-
tion, we have simulated three different models
which represent measurement configurations that
might be employed in the field. Two of the simula-
tions involve one-dimensional (1-D) geometries,
that is, layers, and are compared against a 1-D
modeling code developed by Ki Ha Lee at
Lawrence Berkeley Laboratory. This code can in-
corporate layers of varying thickness, conductivity,
and dielectric permitivity and magnetic permeabil-
ity and can calculate the response for both electric
and magnetic dipole sources oriented in any direc-
tion for normal induction frequencies up into the
radar range. The third model involves a comparison
against a 3-D IE solution given by Newman et al.
[1986]. In all of the cases presented the background
dielectric constant and magnetic permeability were
both assumed to be that of free space, and only the
background conductivity varies from one model to
the next. In addition, the QMR solver was assumed
to have converged to an adequate error level when
HFHZQMZ was found to be less than or equal to 1.0 x
107°. This error level is empirical and is based on
extensive comparisons of the solution with other
numerical solutions and scale model experiments
[Alumbaugh and Newman, 1994].

Airborne Simulation

The first example crudely simulates an airborne
experiment where both a vertical magnetic dipole
(VMD) and x-directed horizontal magnetic dipole
(HMD) are located 20 m in the air over a 100-OQm
half space (Figure 5a). The difference between this
model and the one given in Figure 3a of Newman
and Alumbaugh [1995] is that this incorporates a
magnetic permeability of 5*uy. The sources are
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(a) Airborne simulation with sources and receivers above a magnetically permeable half

space. The two frequencies employed are 0.9 and 56 kHz. The comparisons are between the 3-D
finite difference scheme and Lee’s 1-D solution. (b) Absolute values of the scattered horizontal and
vertical magnetic fields for an HMD source. (c) Absolute values of the scattered horizontal and

vertical magnetic fields for a VMD source.

operating at 0.9 and 56 kHz, and eight receivers are
located at the same height as the sources at 5-m
intervals in x. To calculate this with the 3-D finite
difference code, the earth and air were divided into
a 54 X 43 X 53 cell grid which yields a total of 3.7 x
103 unknowns for which to solve. To avoid reflec-
tions off the mesh boundaries, normal grid stretch-
ing (i.e., b = 0) was employed to move them out to
plus or minus 320 m in x, plus or minus 300 m in y,

and —310 m and +240 m in z where the air-earth
interface is at 0 m. The smallest cell size employed
was 5 X 5 m by 2.5 m and was employed at the
air-earth interface underneath the source-receiver
array. The largest cell size employed was in the
corners of the mesh and was 20 X 20 X 20 m. A
background conductivity of o = 1.0 x 107! S/m

was assumed to simulate the electrical properties of
the air.
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Table 2. Number of Iterations and Time of Solution
for Examples Shown in Figure 5

VMD HMD
Source Type
Frequency, kHz Iterations Time,s Iterations Time, s
0.9 1373 155 1374 155
56 361 41 652 73

Figures 5b and 5c show a comparison of the
magnetic fields for the model compared to the 1-D
solution. These results have had the free space
response removed such that only the fields which
have been backscattered off the earth are plotted.
Although the comparison for both sources is excel-
Ient, the results for the HMD are especially exciting
as the solution for this polarization not only re-
quires a jump to occur in the vertical magnetic field
across this surface, but all vertical electric fields
within the earth must go to zero. From these results
it appears that the FD solution is capable of doing
this. However, the solution for the HMD takes
longer than that of the VMD, which indicates that
this is a harder problem to solve.

The solution convergence times for the two
sources using 100 processors is given in Table 2.
Even though this is a very small problem that uses
only a limited number of processors, the quick
turn-around time clearly illustrates the advantage of
using the parallel processors; running this same
model on our high-end workstation (an IBM RS600-
590) took over an order of magnitude longer. In
addition, these results illustrate the convergence
pattern that has been generally observed for fre-
quencies below 1 MHz with the higher-frequency
simulations converging quicker than the lower.

Cross-Well Simulation

The second example is a cross-well model which
simulates the EM monitoring of an enhanced oil
recovery process such as the one examined by Wilt
et al. [1995]. As shown in Figure 6a, a conductive
block representing either a hot water or steam
stimulation is placed in a 100-Om layer representing
an oil-bearing layer. The reservoir is bounded
above and below by 20-Om layers which are as-
sumed to be the resistivity of the background whole
space. Two wells are located 100 m apart on each
side of the block and in the first simulation a VMD
source is located 40 m above the layer, while in the
second case the source is within the layer. Both the

horizontal (x directed) and vertical magnetic fields
are calculated at the receiver positions in the sec-
ond well.

The grid size of 82 X 62 X 63 cells yields a total
of 9.6 x 10° unknowns. To avoid reflections off the
mesh boundaries, the grid was 800 m long in x, 600
m long in y, and 600 m in depth (z). The largest cell
size employed at the boundaries was 20 X 20 x 20
m, while within the body a minimum cell size of
2.5 X 2.5 X 2 m was employed. In this case 252
processors were employed on the Paragon. The
total run time for both sources and frequencies was
26 min, with the 0.1-kHz simulations taking approx-
imately 5000 iterations to converge, and the 10-kHz
runs taking approximately 700 iterations.

To check the finite difference results we calcu-
lated the response of the block in a layered half
space using the integral equation scheme described
by Newman et al. [1986]. To discretize the block,
cubic cells 5 m on a side were employed, which
resulted in a model that took a few minutes to run
for each frequency on our IBM RS6000 worksta-
tion. The comparison for the source above the layer
is given in Figure 6b and that for the source within
the layer in Figure 6¢c. Notice that in all cases the
comparison between the two solutions is excellent.
It is especially promising that even when the source
is located within the layer and thus embedded in a
zone of anomalous conductivity, the comparison is
good with normal discretization about the transmit-
ter.

Figure 7 shows results for the same exact geo-
logic model as given above with the VMD source
replaced by a vertical electric dipole (VED) source.
Thus here we are comparing the horizontal and
vertical electric fields for the two solutions. Figure
7b shows that for the source located above the layer
the results are in excellent agreement. Even the
rapid discontinuity at the layer boundaries in the z
component of the field is mapped, although it is
done so in a slightly smoother fashion. This
smoother transition for the FD calculations is due to
the manner in which the conductivity is averaged
between adjacent cells and to the manner in which
the bilinear interpolation scheme averages adjacent
data. The solution time for the VED was slightly
longer than that of the VMD, with the 0.1-kHz
simulation taking approximately 6000 iterations and
the 10-kHz run taking 780 iterations for the sources
located above the layer.

The comparisons shown in Figure 7c with the
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Figure 6.
The receiver depths range from 250 to 350 m, and

(a) Cross-well model with VMD source located 40 m above and within a resistive layer.

the frequencies employed are 0.1 and 10 kHz. The

comparisons are between the 3-D finite difference scheme and the integral equation solution of
Newman et al. [1986]. (b) Horizontal and vertical magnetic field results for the source above the
layer. (c) Horizontal and vertical magnetic field results for the source within the layer.

VED source within the layer, though very good,
were much more difficult to obtain compared to the
three other cross-well examples given above. The
most serious problem presented to the FD solution
was that the VED source was located in a zone of
anomalous conductivity. When the background
whole space was assumed to be 20 Om, the ampli-
tudes were off by almost an order of magnitude. To
get the good comparison shown in Figure 7c, a

background of 100 (m, that is, equal to that of the
layer, was assumed. This result demonstrates that
when the source is located within or near a region of
anomalous electromagnetic properties, caution
must be exercised depending on the source type and
polarization.

It must also be mentioned here that although the
results in Figure 7c compare very well, the compar-
ison is not nearly as good as it was for the other
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Figure 7.

(a) Cross-well model with VED source located 40 m above and within a resistive layer.

The receiver depths range from 250 to 350 m, and the frequencies employed are 0.1 and 10 khz. The
comparisons are between the 3-D finite difference scheme and the integral equation solution of
Newman et al. [1986]. (b) Horizontal and vertical electric field results for the source above the layer.
(c) Horizontal and vertical electric field results for the source within the layer.

cases, especially in amplitude. However, we be-
lieve that this is not the fault of the FD scheme but
rather a discretization problem with the IE solution.
We have arrived at this conclusion using the simu-
lation shown in Figure 8. Changing the discretiza-
tion within the FD simulation had almost negligible
results. However, the results are very different
depending on whether a 5-m or 2.5-m cubic cell
dimension is employed to discretize the body within
the IE scheme. Unfortunately, we could not further

decrease the cell size because due to memory
limitations of our IBM workstation; further de-
creasing the cell size to 1.25 m® would have re-
quired eight times more memory. Nevertheless,
because the IE results calculated with the 2.5-m
cubic cells compare to the FD results much better
than those results calculated using a 5-m cubic cell
size, we believe that a closer comparison could be
obtained if a finer discretization was employed
within the IE scheme.
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Figure 8. (a) Cross-well model with VED source located within a resistive layer. The receiver

depths range from 250 to 350 m, and the frequency employed is 10 kHz. The comparisons are
between the 3-D finite difference scheme and the integral equation solution of Newman et al. [1986]
using two different discretizations. (b) Horizontal electric field results showing how using a finer
discretization within the IE scheme improves the fit to the FD results.

High-Frequency Simulation and the Need
for Absorbing Boundary Conditions

In order to help in the design of the “VETEM”’
(very early time electromagnetic) geophysical pros-
pecting system [Pellerin et al., 1995] the code must
be able to accurately calculate the response for
frequencies ranging from 500 kHz to 50 MHz. To
illustrate the accuracy of the code at these frequen-
cies and the need for absorbing boundary condi-
tions, the model shown in Figure 9a has been
employed. This example was designed to simulate a
test site at the Colorado School of Mines, where a
prototype of the VETEM system known as the
‘“high-frequency sounder’ [Stewart et al., 1994]
was first tested. The model is particularly difficult to
simulate because of two conflicting conditions that
are imposed by the material properties: (1) The
wavelength in the second layer at 28.5 MHz is
approximately 1.6 m, which requires a maximum
cell dimension of 0.16 m to avoid grid dispersion
[Chew, 1990, p. 244], and (2) the skin depth in the

first layer at that same frequency is 17.8 m, which
requires the boundaries to be placed very far away
to avoid reflections off the grid. The small cell size
coupled with the large distance to the boundaries
produces a very large mesh if no absorbing bound-
ary conditions are employed. In addition, as dem-
onstrated below, simply enlarging the cells at the
boundaries as we have done in the previous exam-
ples does not work and actually can make condi-
tions worse due to grid dispersion. Thus absorbing
boundary conditions are needed to solve the prob-
lem.

Throughout most of the following examples, a
120 x 120 X 120 cell mesh was employed with a
constant cell size of 0.15 m in the x and y directions.
This places the total distance across the mesh at 18
m. In z the maximum cell size was also 0.15 m, with
a minimum cell size of 0.13 m to accommodate the
layer thicknesses. Note that this mesh produces a
total of five million unknowns. The VMD source
was placed at the center of the mesh in x and y, that
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Figure 9.

(a) Colorado School of Mines 1-D model. The magnetic permeability in all three layers

has been set to that of free space. Unless otherwise noted a 120 x 120 X 120 cell mesh was employed
with a maximum cell dimension of 0.15 m. The comparisons are between the 3-D finite difference
scheme (symbols) and Lee’s 1-D solution (lines). (b) Horizontal and vertical magnetic field results
obtained with no grid stretching. (¢) Horizontal and vertical magnetic field results obtained with real
grid stretching (a 1.0, b = 0.0) for 25 cells along each boundary. (d) Horizontal and vertical
magnetic field results obtained with complex grid stretching (@ = 0.0, b = 0.6) for 25 cells along each
boundary. (¢) Horizontal and vertical magnetic field results obtained on a 72 X 72 X 72 cell mesh

with increased complex grid stretching (a = 0.0, b = 2.0) for 10 cells along each boundary.

is, 9 m from each boundary, and a background
conductivity of o= 1.0 X 1071® S/m was assumed.

In Figure 9b the horizontal and vertical magnetic
fields calculated with the 3-D code and no absorp-
tion have been plotted against Lee’s 1-D solution. It
is immediately evident that the 3-D solution begins
to break down at about 15 MHz, and we can assume

that this is due to reflections of the mesh boundaries
contaminating the solution. Doubling the size of
cells along the mesh boundaries, that is, using
normal grid stretching, does not help matters. Fig-
ure 9¢ shows that poor results occur when a real
stretching parameter a = 1.0 is employed along 25
celis of each boundary. However, when complex
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grid stretching is employed the results are much
better. Figure 9d shows that when a stretching
parameter of b = 0.6 is employed along 25 cells of
each boundary, the fields calculated with the 3-D
solution match those of 1-D solution almost exactly.

In Figure 9¢ we demonstrate how the absorbing
boundary conditions can be employed to shrink the
size of the mesh. In this case a 72 X 72 X 72 mesh
was employed, and again a maximum cell size of
0.15 X 0.15 X 0.15 m was used. This small mesh
size places the boundaries only 10.8 m apart. To
calculate the results, a complex grid stretching
parameter of b = 2.0 was employed along 10 cells of
each boundary. Notice that the 3-D calculations
again agree almost exactly with the 1-D solution.
This example fully illustrates the utility of these
absorbing boundary conditions as not only do they
allow one to accurately model high frequency
where propagation rather than diffusion dominates,
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but they also allow the mesh size to be significantly
reduced, which results in much quicker run times.

Because the rate of convergence of the Krylov
solvers is dependent on the spectral properties of
the linear system, an analysis of how the PML
boundary condition affects the system can be ac-
complished by observing how different stretching
parameters alter this convergence. Thus in Figure
10 the number of iterations for convergence have
been plotted for those results shown in Figures 9b
through 9d. Notice that at low frequencies, the
unstretched system converges quickly. However,
as the frequency increases, the number of iterations
needed for convergence also increases. The rapid
increase in solution time is even more dramatic for
system that has had real grid stretching applied. In
contrast, the system with the complex grid stretch-
ing behaves much differently. Although it takes
longer to converge when compared to either of the
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Figure 10. The solution times of the QMR method for different frequencies and the different grid
stretching parameters employed for Figures 9b through 9d.

other methods at lower frequencies, it does not
experience the rapid increase in solution time as the
frequency increases. This indicates that unlike the
other two methods of terminating the mesh, the
spectral properties of the system that employs com-
plex grid stretching is almost independent of fre-
quency, at least for frequencies greater than 10
MHz.

Run Time Properties of the Solution
on the Intel Paragon

To fully demonstrate the power of the massively
parallel (MP) code and to demonstrate some of the
questions that must be answered when using these
machines, the solution time has been plotted against
the number of processors employed for one of the
VETEM simulations examined above. Figure 11
shows the solution times versus the number of
processors employed as well as the flop rate at
which the Paragon is operating. The large decrease

800

in run time with an increasing number of processors
up to 512 indicates that the processors are spending
the majority of their time performing calculations
rather than communicating. This corresponds to
solving for 10,000 to 24,000 unknowns per proces-
sor. Medium processor efficiency is obtained when
between 512 and 1000 processors are employed,
which corresponds to 10,000 to 3,000 unknowns
being assigned to each processor. The relatively
small decrease in run time with increasing number
of processors over 1000 indicates that if fewer then
3000 unknowns are being solved for on each pro-
cessor, the code is inefficient due to message pass-
ing. Thus, if we wish to use the machine most
efficiently, we should employ the minimum number
of processors that the local memory will allow. We
could then run several jobs simultaneously such
that the efficiency increases proportionally to the
number of jobs. On the other hand, if we desire as
quick a turm-around time as possible for a single
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The solution time and flop rate versus the number of processors employed on the Intel

Paragon for the 10.1-Mhz simulation plotted in Figure 9d.
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computation, then we would want to operate near
the right end of the curve.

The second topic to be addressed is the maximum
size of the model that we can simulate on the
Paragon. Because we must assign a certain number
of processors to each of the x, y, and z directions,
we have found most complete use of all 1840
processors occurs when 14 are assigned to one
direction, 13 to the second, and 10 to the third for a
total of 1820 processors. Each node on the Paragon
is equipped with 16 Mbytes of local memory. If we
store the matrix A in single precision to make
maximum use of the memory, the maximum prob-
lem that a single processor can accommodate is
20 X 20 X 20 cells, or 24,000 unknowns. Thus the
maximum problem size is 280 X 260 x 200 cells for
a total of 43.6 million unknowns. However, if for
accuracy we wish to store the matrix in double
precision, then the maximum number of cells each
processor can accommodate is 15 X 15 X 15 cells,
which is equivalent to 10,125 unknowns. In this
case the maximum model size is 210 X 195 x 150,
which yields a total of 18.4 million unknowns. Note
that the example running on 216 processors in
Figure 11 assumes that each processor is running at
maximum capacity. Taking the flop rate for this
example (1.75 Gflops/s) and scaling it upward for
the maximum number of processors that we can
access at one time (1820) yields a theoretical max-
imum flop rate of 14.7 Gilops/s.

Conclusions and Discussion

In this paper we have presented a scheme to
solve for the frequency domain electromagnetic
response of a 3-D earth over a wide band of
frequencies using massively parallel computers.
The problems associated with porting the serial
version of the scheme to a parallel machine have
been outlined, and a variety of comparisons have
been demonstrated to prove the wvalidity of the
code. Implementing the code on the 1840-processor
Intel Paragon has demonstrated a decrease in com-
puting time of over 2 orders of magnitude when
compared to a high-end IBM workstation and a
similar magnitude increase in the maximum model
size that can be simulated. In addition a maximum
theoretical flop rate of 14.9 Gflops/s has been estab-
lished.

Currently we are using the scheme in a variety of
projects, for example to assist in the design of

geophysical instruments [Pellerin et al., 1995] as
well as simulating airborne EM surveys [Alum-
baugh and Newman, 1995; Newman and Alum-
baugh, 1995]. The simulations that we are running
for these projects would have been impossible prior
to the parallel implementation due to the size of the
models and/or the number of frequencies and
sources involved. We believe, however, that are
still several areas where the scheme can be im-
proved. Some topics of ongoing research include
the following:

1. Better preconditioners. Some techniques be-
ing considered are multigrid preconditioners and
methods to separately treat the real and imaginary
components of the matrix system.

2. A thorough study of the grid-stretching pa-
rameters and the development of emperical and/or
analytical methods to determine the optimal
stretching parameter(s) for any model.

3. A better method of interpolating the calcu-
lated fields to the receiver when it is located near a
discontinuity in material properties. Currently, the
interpolation scheme does not take into account the
“‘jump’’ condition across the boundaries. To cor-
rectly calculate the fields at these boundaries, the
normal electric current and magnetic induction,
rather than just the fields themselves, must be
interpolated.

4. A scheme to accelerate the convergence for
very low frequency simulations where channeling
currents dominate. This is needed in order to sim-
ulate natural field measurements as well as extend
the frequency band down below 100 Hz. Smith
[1992] has found that a static correction can be
incorporated to accommodate this.

5. Better methods of dealing with the air-earth
interface. We have found that this interface tremen-
dously complicates the numerical problem, espe-
cially when electric dipole sources are employed on
the surface.

A last topic that should be addressed is a com-
ment regarding the computational differences be-
tween the frequency and time domain formulations.
Because the frequency domain requires complex
math to be employed, because extra precision is
needed to avoid rounding errors in the Krylov
methods, and because the matrix A must be stored,
the frequency domain solution is significantly more
memory intensive than a finite difference time do-
main (FDTD) time-stepping code. In addition, to
get a full time solution in some instances may only
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require a few more time steps than the number of
iterations required to calculate the response at a
single frequency. Thus it would initially appear that
a frequency domain is a waste of resources. How-
ever, for the frequency domain nonlinear inversion
problem in which this code will ultimately be em-
ployed, we may only require a few frequencies over
several decades. In addition, the data produced by
many commercial EM geophysical systems is loga-
rithmically rather than linearly sampled in fre-
quency. This type of simulation can be very expen-
sive to compute using an FDTD code and then
Fourier transforming because of the large number
of time steps needed to accurately calculate the
low-frequency components as well as the high-
frequency ones, especially if we are operating be-
low 1 MHz, where diffusion dominates. Further-
more, in the future we will be examining the effects
of dispersion which is much easier to implement in
the frequency domain. Thus although the scheme
presented here is more memory intensive compared
to standard FDTD schemes, it is extremely valuable
in simulating the earth’s response at discrete fre-
quencies.

Appendix A: Proof of the PML Absorbing
Boundary Condition Using Complex Grid
Stretching

The perfectly matched layer concept proposed in
2-D by Berenger [1993] and 3-D by Katz et al. [1994]
was originally developed for time domain simula-
tion of Maxwell’s equations. Here we demonstrate
that this method is valid for the 3-D frequency
domain Helmholtz equation for the scattered elec-
tric fields using the method of Chew and Weedon
[1994]. First we simplify (1) by assuming that we are
at a boundary far away from any zones of anoma-
lous electrical properties such that it can be written

Vi XV, XE®*+iopp(op +ioep)E*=0. (Al

Because we are far away from any anomalous
zones, a possible plane wave solution to (A1) along
this particular boundary is given by

ES = E§e™'~ (A2)
where k = ki + k,J + kk and r = xi + yj + zk.
Because V X E§e®™ = jk X E§e™™, it is easy to
show that when (A2) is substituted into (A1), the
resulting expression has the form

—ky Xk, XE* + iouy (o, +ive,)ES =0 (A3)
where
k ky . k, .
ko =—i+—j+—k (Ad)
ey e e,
and
ky ky,  k, .
ky = —1+—]+—k. (AS)
h, hy h,

Using a vector identity, the left hand term in (A3)
can be expanded to yield

(ky "k )ES — Kk (ky - E) +iowpp(o, +ine,)ES = 0.
(A6)

Because we are in a homogenous region absent of
any free ‘‘secondary’’ charge,

V,-ES=k;-ES=0 (A7)
and thus we are left with
kp -k DE® + iop (o +iwey)E® =0 (A8)
or
T 1 » 2_ 2
kh.kL,:;;-—;kx—i-gh—y y+ezhzkz=f< (A9)
where k* = —lopy(op + iwep).

Let us now assume that the plane wave is ob-
liquely incident on an interface at z = ¢ where c is
constant. Chew and Weedon [1994] show that the
solution to (A9) is that of a 3-D ellipsoid which is
satisfied by

ke = K \lexhy sin 6 cos ¢ (A10)
ky = k\eyh, sin 6 sin ¢ (A11)

and
k, = kv\e;h, cos 6. (A12)

In addition, they find the reflection coefficients for
the TE and TM modes at the boundary to be

e _ K1ze2zp2 — kopzeiz
kizeazpa + kazer

(A13)

and



20 ALUMBAUGH ET AL.: THREE-DIMENSIONAL WIDEBAND EM MODELING

™ _ kizhy 92 = ky hy 3y
klthZjQ + klzhlzj\’l

(Al4)

where 1 represents the properties of medium the
incident wave is traveling through, 2 designates the
medium it will be transmitted to, and §; = o; + iws;.

Phase matching will occur if ky, = k,, and k;, =
kyy. To accomplish this we first set the material
properties of the two media to be identical (k; = k)
and then choose i, = e, and h, = e,. If we now let
eix = €3, = ejy = €3, = 1, and furthermore set 6,
= 6, and ¢; = ¢,, then the two reflection coeffi-
cients in (A13) and (A14) are zero and no reflections
are generated at the interface. However, by making
ey, complex, we provide additional loss in k;,,
which causes the wave to more rapidly attenuate in
medium 2 than it would otherwise.

It must be mentioned that three assumptions have
been made in this analysis which cannot be incor-
porated into the 3-D FD modeling scheme. The first
assumption is that e, ey, h,, and hy do not vary
along the ‘‘z”” interface. In the corners of the mesh
these values are also varying to incorporate absorp-
tion along the x and y interfaces, and thus perfect
matching cannot occur in these locations, and re-
flections will be generated. However, we have not
experienced any serious problems with regards to
this phenomenon. The second assumption is that
we have made here is that the interface is located
far away from any regions of anomalous electrical
properties. Nevertheless, as the results in Figures
10d and 10e indicate, the PML is valid even when
the stretching occurs within these regions, for in-
stance, at the mesh boundary located at the botiom
of the model shown in Figure 10a. Finally, it is
assumed that i; = ¢; for j = x, y, and z. As shown
in Appendix B, 4; is actually a weighted average of
the e; values assigned to two adjacent cells where
the weighting depends on the cell dimensions. How-
ever by using both a constant value of e; and a
constant cell size throughout the PML region, any
problems with this assumption can be avoided.

Appendix B: Discrete Form of the
Modified Electric Field Helmholtz
Equation for a Staggered Grid

We start with the modified Helmholtz equation as
given if (1). First let us expand out the two first-
order curl operators, that is,

U xS 1 9EZz° 1 3Ey°® 1 0Ex® 1 9Ez®\,
XE =|————— i+|———— j
¢ ey, dy e, 0z e, 0z e, 0x :

1 dEy® 1 9ExS\,
———— k B1
ey 0x ey, dy
and
(r = pp)
Vs L
I
1 9 (u'z '—V‘p)HZP 19 (p'y "/Lp)Hyp .
=—— —— e — ——ee—— 1§
hy 3y 13 h, 9z By

< I o (ux— I-Lp)pr 19 (:u'z - IJ-'p)Hzp A
e —
hy 9 Mz

N 10 (py —pp)HY® 19 (s = pp)Hx? ‘
hx ax Ky hy ay Mx .
(B2)

In this expression, w,, for w = x, y, and z represents
the magnetic permeability that is averaged across
the face of two cells in the wth direction. Next,
expanding the second-order curl on the left side of
(1) we find that

VhX

w
—pVexEs
w

1 8 pp OEXS

hy dy ey Oy
1 6 pp 0Ex® 1 8 ( pup OEZ
—— +.___.__
h; 9z \pye, 0z h; 0z \pye, 9x
1 0 [ p, 9EZ® 1 0/ p, 9E,S
Y P L9 p y
h; 0z \pyey, 9y h, 0z \pre, 9z
1 0 [ m, 0Ey® 1 8 [ pp 0Ex®
— — — — ..l.______
hy 0x \p e, 9x hy 3x \pge, 9y
1 98 ( pp 0Ex® 1 8 { p, 9EZ®
+|—— — =
hy 0x \pye, 9z he dx \pye, dx
10 [ up 0EZ 10 [ p, 3EY®
—_—— R +___._.
hy 9y \myey, 9y hy 9y \pmye, dz

Now let us examine the parts of the Helmholtz

N

equation corresponding to i, j, and k separately

~

1

2

J

N

k. (B3




ALUMBAUGH ET AL.: THREE-DIMENSIONAL WIDEBAND EM MODELING 21

since these are the three equations that we are going
to be solving at each node. For the i component we

have
10 [ pup 0Ey\ 1 9 pp 9Ex®
Hp 9 1 0Ex®
7:&(;;;: az)

1 9 p, 9EZ®
h, 9z

+iow,(o +iwe)Ex®
Hyey 0X

= -—ile,p(O' - O'p + iw(e - Ep))Exp

iopp 8 (u; — pp)Hz?
hy oy Bz

_ iopy i (my — :“'p)Hyp

B4
h, 09z My ®9

Approximating (B4) with finite differences yields

Hp
Moz jrani

1

(eyiby;)

(Eyii — Ey; jr 100
(e YVi+1,j+(1/2),k i,j+(1/2)k

(Exiram), e = EXiean),ip)

Mp i
(exibx;)

(Eyiej-ame — BV j-ame

P Zik(12), j-(12) k

T Ay (Exiem).jh— Exis+(1/2),j—1,k)H
Yj-1 =20

1 . Pp 1 E2
(hy;AY) (exihx;) Zit1,jk+(112)

M Yiv(112), jk+(112)
- Ezf, Jkr(2) T T (Exis+(1/2), Jk+1 T Exis+(1/2),j,k)
(exAzy)

Hp 1

s s
(euhny) (Ezir1,jk-an) ~ Ezij—an)
oy iram. ji-an Cxil X

B~ i) }
zk— -

1

et iou, P, Ex; ‘e
(hzkAfk) MpYpLiXiv(1/2),j.k

= —iopp(Pivam.jre = Ip) ExEan).ji

. (Myi+(l/2).j,k+(1/2)
—lopy

"“L)’i+u/2),j,k+(|/2)

- I‘Lp)

Hy!, ) jie ()

- ILp) 1

(hzkAZ_k)

(I'L)’Hu/z),j,k—(un

Hy P an),jk—n)

Ky +(112),j,k—(112)

- /-"p)

(#’ Zi(1/2), j+(12) k P
- Hziyap),j+(n).k

L Zit(12), j+(112) &

(;L Zisam.j-amie P)

1
HzZP (), -0k W} .
J

® Zit(112), j-(1/12) k

where now $ = o + iwe. In this expression Aw; for
w=x,y,zand [ = i,j, k represents the width of the
Ith cell in the wth direction. Similarly Aw,; is the
distance in the wth direction between the centers of
cells [ and I — 1. Notice in this expression how the
finite differences and the stretching parameters con-
veniently group together. It is also apparent that
because Aw, is essentially the weighted average of
the widths of cells [and | — 1, A, is the weighted
average of e,; and e,,;_;.

We can similarly expand the equations for the §
and k terms which yields

Hp
I’in.j+(|/2),k+(1/2)

1
(exAz)

ehy) Bz jergeran) — B2 juram)
Yi J

By} jramu+1 — BV jramp)

Mp i
Fox; s ami-am (eyiAy;)

Bz jsra-am — Bz jr—an)

By jvame — EVijvama—1)

1
(hzkA Z-k)

(ezk-1Azk-1)

Hp 1 s Ex$
+ N Exiranm, e~ ExXivan, 0
F i eamn | i i)

1
(exiAxi)

(Eyierjrame — EYE jrami)

Hp 1 s s
Ex;_ ; — Ex;_ )
ij)( (1), j+ 1,k —(12),).k

Mzi—(llz),j+(l/2)'k (eyj
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" (esim1Axic1) EY: jramr = By jram e
Xt— -

|

1

et jouy By}
(hyAx) FepYpLoYi j+(112),k

= —iwpy(Jij+am)k — Ip) EVEjranmk

. (I‘in,j+(1/2).k+(112)
— 1wy

Hox i, j(12),k+(172)

- .u'p)

P
Hx; v am) k+(102)

- /-Lp) 1

(Mxi.1+(l/2).k—(llz) H p
X+ (1/2) k- (172 =
1,j+(1/2),k—(1/2) (hzchZk)

,LL i, j+{1/2),k~(112)

(I'LZH(IIZ).jHl/Z).k - IJ“P)

p
Hzi iy, j+aim).k
'I'in+(1/z),j+(uz),k

(p‘zi—(uz),jﬂuz),k - ’J‘P)

(B6)

® Zi-(112), j+(12)

.
1
Hzl (i1, j+(1/2),kJ _—(h i Af-)}
Xt 1

and

Hp 1 s s
oh Exiyany,jert — Exiram,jx)
Byiam.jivan | \€2k 9]

1
(eqhx) (Ezierjuran ~ B2 jreran)
Xt 1

Hp 1

Myi-—(l/z),j,kﬂl/z) (eZkA Zk)

(Exi-any,jpe1 = EXi_ap) i)
1
(B2 ram — E2iy
e Axi—l)( £ (112) 1,5,k +(172) "

%l X;)
Hp
+
K X, j+(12) k+(112)

1
T eody) (Ez}je10eam) — B2 j,k+(1/2))}
I J

(egxAzi) Eyijramper = EYE jrami)
Z

MHp L
(el zp)

By} j-amyierr = BY: j—m 1)

P X, j~(112),k+(112)

YY) (B2} jaeram ~ B2 jm1 ke ) }
yi— J

1

C e o p I B kran
(hyjij) pr PR, k+(172)

= —iwpp@ijirar) — o) Ezf jrran)
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—lwpy

Hox i, (U12) J+(112)
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Hx; i apy kv
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J—(1/2),k+(172) =

” (hy;A;)
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1
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respectively. Unfortunately the above equations
will not produce a symmetrical matrix. Thus sym-
metrical scaling must be applied with (B5) being
multiplied by (e ;Ax)(hy;AV;)hyAZy), (B6) by
(hih £y DY) Zy), and (BT) by (i %)y jAT)
(ezkAZk).

My i=(112), j k+(112)
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